Highly durable direct-current power generation in polarity-controlled and soft-triggered rotational triboelectric nanogenerator
Jae Yeon Han,
Huidrom Hemojit Singh,
Sukyoung Won,
Dae Sol Kong,
Ying Chieh Hu,
Young Joon Ko,
Kyu-Tae Lee,
Jeong Jae Wie and
Jong Hoon Jung
Applied Energy, 2022, vol. 314, issue C, No S0306261922004147
Abstract:
While the sliding-mode triboelectric nanogenerators (TENGs) have demonstrated one of the most efficient rotational energy harvesting devices, alternating-current (AC) generation and wear-off have been a long-standing bottleneck for practical applications. Here, we developed a polarity-controlled and soft-triggered (P-S) TENG for highly efficient and durable direct-current (DC) power generation. The P-S TENG consists of polytetrafluoroethylene (PTFE), nylon, and Cu films for triboelectrification, as well as another Cu film for charge-delivering electrode. The PTFE and nylon films were alternately attached to the outer acrylic cylinder, and four-segmented Cu films were attached to the inner acrylic cylinder. The P-S TENG generated a power-density of 0.32 mW/cm2, which was 4-fold and 32-fold larger than that of paired alternate and single polarity TENG, respectively. Remarkably, the DC output of P-S TENG remained nearly constant, despite 372,000 rotations, which sharply contrasted with the substantial power decrease (47%) in hard-triggered TENG. This work provides an important advancement in a rotational TENG with high DC power generation and long-term durability.
Keywords: Triboelectric nanogenerator; Direct-current; Durability; Polarity-control; Soft-triggering; Rotational energy harvesting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004147
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:314:y:2022:i:c:s0306261922004147
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119006
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().