Towards 100% renewable islands in 2040 via generation expansion planning: The case of São Vicente, Cape Verde
Daniel Vázquez Pombo,
Jon Martinez-Rico and
Hannah M. Marczinkowski
Applied Energy, 2022, vol. 315, issue C, No S0306261922003014
Abstract:
In the energy transition context, islands are identified as particularly challenging regions due to their isolation, and energy dependence; while their excellent renewable resource and rapid growth makes them exceptionally interesting test cases. With the growing number of countries targeting 100% renewable penetration during the next decades, it is important to assess not only how to do so, but also whether we should. This paper focuses on the perspective of a generally overlooked set of regions; island developing nations. Their common challenges and energy policies are exemplified with a comprehensive generation and storage expansion planning (GSEP) for the island of São Vicente, Cape Verde. Formulated as an optimisation problem with hourly resolution, the GSEP minimises investment, maintenance, operation and emissions costs over a 20 year horizon from 2021. The extreme seasonal dependence of wind and solar resources is captured along with the operational dynamics of the generation and storage. Three scenarios are defined, one Business As Usual (BAU) keeping the current operational paradigm, another, Green, aligned with the local government goals, targeting 50 and 100% renewable shares in 2030 and 2040, and, lastly, one finding the Optimal. To reduce uncertainty influence, we consider three load growth levels for each scenario, defined based on expectations from national and international sources, corresponding to 1, 3 and 5%. The robust analysis obtained by combining scenarios and load levels provides a thorough view of Cape Verde’s energy system to consider in future energy policy design. Green is the most expensive, BAU represents a 7% cost reduction, while Optimal a 30%, in addition to providing 90% renewable penetration, significant emissions reduction, and enough flexibility to modify the planning course if needed.
Keywords: Isolated power system; Generation expansion planning; Cape Verde; Optimisation; Power system economics; Energy transition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922003014
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:315:y:2022:i:c:s0306261922003014
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118869
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().