Accurate identification of influential building parameters through an integration of global sensitivity and feature selection techniques
John Neale,
Mohammad Haris Shamsi,
Eleni Mangina,
Donal Finn and
O’Donnell, James
Applied Energy, 2022, vol. 315, issue C, No S0306261922003683
Abstract:
The development of building energy performance simulation models often requires significant time and effort to achieve an acceptable degree of prediction accuracy. As such, energy modelers introduce various simplifications and assumptions that require a high degree of modeling literacy to avoid any errors in energy predictions. Previous studies relate these simplifications to the identification of influential building parameters using engineering judgment techniques that are often subjective and differ based on experts’ opinion. The proposed methodology accurately defines influential and non-influential building parameters to formulate a guideline minimum dataset in the context of residential building energy models. The methodology integrates two feature selection techniques (Bayesian Information Criteria and Least Absolute Shrinkage with Selection Operator) with parametric analysis to determine the set of influential parameters. The study uses Irish residential archetypes to compare and validate the subsets of influential parameters using sensitivity rankings and established validation metrics. The predicted annual energy use lies within 10% of measured data for both subsets of influential parameters. Thereby, energy modelers could significantly reduce the time and effort spent on model development while maintaining the desired accuracy. The formulated datasets represent only influential features and hence, could be used by urban planners and energy policymakers to estimate energy retrofit investment costs, emission reductions and energy savings.
Keywords: Energy modeling; Building energy performance simulation; BEPS; Feature selection; Sensitivity analysis; Parametric analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922003683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:315:y:2022:i:c:s0306261922003683
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118956
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().