Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis
Yu Huang and
Ali Turan
Applied Energy, 2022, vol. 315, issue C, No S030626192200424X
Abstract:
To investigate the application of hybrid technology in scenarios with high concern for system self-accommodation rapidity, an operationally flexible configuration based on SOFC and twin-shaft free turbine engine has been proposed in this research. The corresponding turbomachinery matching expressions are integrated with thermodynamic and electrochemical descriptions in the novel model so that mechanical equilibrium running states can be guaranteed throughout design and off-design analysis. Inclusion of SOFC and combustor pressure losses (3% and 5%) in high-pressure turbine design can effectively alleviate poor turbine operation and improve cell voltage by 54%, thermal efficiency by 31% under design conditions. For the hybrid gas generator, an integrated calculation algorithm has been developed to satisfy both flow and work compatibility requirements, which essentially constitute a closed binary nonlinear equation set after allowed assignment. The coupling of SOFC not only affects along stream parameters, but also imposes restrictions on the solution scope of the equation set from both horizontal and vertical directions. The flow compatibility between the two mechanically separated turbines finally enables the depiction of equilibrium running line/point on turbomachinery characteristics. With one of the appropriate pairing designs of turbines, the running line can pass through the point of rated rotational speed and compression ratio, where a thermal efficiency of 49.3% is achieved.
Keywords: Hybrid system; Solid oxide fuel cell; Twin-shaft free turbine engine; Flexibility of operation; Equilibrium running; Turbomachinery matching (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192200424X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:315:y:2022:i:c:s030626192200424x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119018
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().