Optimization of photovoltaic provision in a three-dimensional city using real-time electricity demand
Rui Zhu,
Cheng Cheng,
Paolo Santi,
Min Chen,
Xiaohu Zhang,
Martina Mazzarello,
Man Sing Wong and
Carlo Ratti
Applied Energy, 2022, vol. 316, issue C, No S0306261922004445
Abstract:
Promoting the use of solar photovoltaic (PV) systems in global cities can be an effective way to cope with severe environmental problems caused by the consuming of fossil fuels. However, a complex urban environment challenges the effective use of PV systems for practical applications. Essentially, this is a spatial optimization problem, where the goal is maximizing the harvesting of solar energy while minimizing occupied urban surfaces. To address this problem, this paper proposes three hierarchical optimizations. First, computational optimization provides a parallel architecture for an established 3D solar estimation model to achieve spatially scalable computation with high spatio-temporal resolution. Second, priority optimization determines the use of different urban partitions considering various constraints. Third, capacity optimization analyzes the spatial and quantitative distribution of solar potential, constrained by the smallest solar irradiation and the minimum surface area to be used. The overall optimization framework is then set to obtain the minimum PV installation capacity required to meet the real demand with the identification of urban surfaces to be equipped with PV modules. By using smart meter data with high temporal resolution in the city of Bologna, Italy, our analysis not only provides executable plans to meet the real demand but also reveals that rebalance and storage capacity are needed to achieve a real-time self-supportive architecture. The proposed analytic and optimization framework can promote distributed PV systems in urban areas and facilitate energy transition adapted to a variety of applications.
Keywords: Solar energy; Solar urban planning; Spatial optimization; Big data computation; Geographic information systems; 3D cities (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004445
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004445
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119042
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().