Optimal Design of a Distributed Ship Power System with Solid Oxide Fuel Cells under the Consideration of Component Malfunctions
Lukas Kistner,
Astrid Bensmann and
Richard Hanke-Rauschenbach
Applied Energy, 2022, vol. 316, issue C, No S0306261922004500
Abstract:
In the shipping industry, solid oxide fuel cells (SOFCs) are a much-discussed technology due to their high energy efficiency, fuel versatility, and emissions reduction potential. In contrast to internal combustion engines, modular SOFC units allow for distributed system configurations without drastically reducing the overall efficiency. Decentralizing the power system with regard to the electrical consumers’ demands reduces both grid size and transmission losses, leading to a reduction of investment and operating costs. Additionally, a modular approach significantly benefits required redundancy aspects. A case study based on a cruise ship with nine fire zones is used to quantify the advantages of a distributed approach from an economic point of view. For this, a design optimization with variable installation location is conducted both with and without component failure considerations. Compared to a central configuration, annual transmission system costs in a distributed approach are reduced by 76% without and 55% with component failure consideration. However, the cost reduction potential proves to be small compared to other matters of expense. The modular system characteristic ensures that minor modifications suffice for component redundancy, resulting in an investment cost increase of less than 2% for both central and distributed configurations.
Keywords: Distributed ship power system; Shipboard microgrid; Modular power system; Component redundancy; Solid oxide fuel cells; Energy system design optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004500
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119052
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().