EconPapers    
Economics at your fingertips  
 

Bio-based materials as a robust solution for building renovation: A case study

Alina Galimshina, Maliki Moustapha, Alexander Hollberg, Pierryves Padey, Sébastien Lasvaux, Bruno Sudret and Guillaume Habert

Applied Energy, 2022, vol. 316, issue C, No S0306261922004883

Abstract: Boosting building renovation is urgently needed to achieve carbon neutrality by 2050. Building retrofit can be achieved by energy-efficient measures such as thermal insulation or replacement of a fossil heating system. Currently, conventional materials that are mostly used for envelope insulation raising the risk of a lock-in situation where measures to mitigate climate change are actually contributing to it. Bio-based materials are a promising alternative as they can be used to not only reduce the energy consumption of a building but also temporarily store carbon. To evaluate the potential benefits of such materials, life cycle assessment (LCA) and life cycle cost analysis (LCCA) are commonly used. Such assessment allows the analysis of a building over its whole life. However, considering that buildings are very long lasting systems, many associated uncertainties can affect the outcome of LCA and LCCA. To account for all the uncertainty sources and provide a robust solution for building renovation, uncertainty quantification can be applied. In this paper, we use robust optimization under uncertainties to define the most cost-effective and climate-friendly solution. We apply bio-based materials and include carbon storage calculation in the integrated LCA and LCCA. For the robust optimization, we use a novel methodology combining a well-known non-dominated sorting genetic algorithm II (NSGA-II) with surrogate modeling to lower computational cost. The methodology is applied for a case study located in Switzerland. The results show that bio-based materials provide a robust solution for building renovation but to achieve the highest reduction potential, bio-based envelope insulation should be combined with the replacement of the existing fossil heating system.

Keywords: Life cycle assessment; Life cycle cost analysis; Uncertainty quantification; Building renovation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004883
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004883

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119102

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004883