EconPapers    
Economics at your fingertips  
 

Research on day-ahead transactions between multi-microgrid based on cooperative game model

Weidong Chen, Junnan Wang, Guanyi Yu, Jiajia Chen and Yumeng Hu

Applied Energy, 2022, vol. 316, issue C, No S0306261922004913

Abstract: Microgrids are one of the most common forms of distributed energy participation in the electricity market. This paper discusses the lack of market competition among independent microgrids as a factor in setting up a cooperative alliance among microgrids. Independent microgrids aim to minimize the system's overall operating costs. The first principle is to maximize scenery output and consumption. We develop and solve an optimization model to obtain the interactive power with the distribution network and the charging and discharging power arrangement for the energy storage module. We then construct a cooperative game model among multiple microgrids on this basis. Nash bargaining is used to coordinate the distribution of benefits among microgrids, as well as to analyze the optimal trading power and tariffs among microgrids. The research proves that the cooperative game among microgrids can realize the flexible consumption of renewable energy in the region. Microgrids also have lower operating costs. The Nash bargaining helps the members in the coalition to get satisfactory trading power and tariff. Additionally, it effectively improves the overall operational efficiency and market competitiveness of microgrid systems.

Keywords: Multi-microgrid; Power trading; Cooperative game; Nash bargaining (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004913
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004913

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119106

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004913