A spatial optimization approach to increase the accuracy of rooftop solar energy assessments
Qing Zhong,
Jake R. Nelson,
Daoqin Tong and
Tony H. Grubesic
Applied Energy, 2022, vol. 316, issue C, No S0306261922005062
Abstract:
Recent years have seen a substantial increase in energy produced by renewable sources. The International Energy Agency (IEA) expects a large portion of future growth in renewable energy to come from solar, especially rooftop photovoltaic (PV) systems. Studies focused on estimating rooftop solar energy potential generally use the total area available for PV installation as determined by solar irradiance availability. This process can lead to substantial over- or under-estimation of energy estimates. Only a few studies have incorporated the spatial layout of PV panels in the solar energy generation estimates, and none have simultaneously considered PV panel size, orientation, and rooftop structure. We address this limitation with a new spatially explicit optimization framework to enhance the accuracy of rooftop solar energy assessments. We consider both the roof's structural configuration and the shape and size of the panels in a novel maximum cover spatial optimization model. After applying the framework to three different types of rooftops (flat roof, pitched roof, and complex roof), we find that conventional methods can lead to a nearly 60% overestimation of energy potential compared to the optimized panel layout. Our work illustrates the importance of considering panel size and rooftop characteristics and offers a mechanism for designing more efficient rooftop PV systems.
Keywords: Rooftop photovoltaic system; GIS; UAV; Spatial optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005062
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:316:y:2022:i:c:s0306261922005062
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119128
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().