Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints
Dafeng Zhu,
Bo Yang,
Chengbin Ma,
Zhaojian Wang,
Shanying Zhu,
Kai Ma and
Xinping Guan
Applied Energy, 2022, vol. 317, issue C, No S0306261922004901
Abstract:
Contemporary industrial parks are challenged by the growing concerns about high cost and low efficiency of energy supply. Moreover, in the case of uncertain supply/demand, how to mobilize delay-tolerant elastic loads and compensate real-time inelastic loads to match multi-energy generation/storage and minimize energy cost is a key issue. Since energy management is hardly to be implemented offline without knowing statistical information of random variables, this paper presents a systematic online energy cost minimization framework to fulfill the complementary utilization of multi-energy with time-varying generation, demand and price. Specifically to achieve charging/discharging constraints due to storage and short-term energy balancing, a fast distributed algorithm based on stochastic gradient with two-timescale implementation is proposed to ensure online implementation. To reduce the peak loads, an incentive mechanism is implemented by estimating users’ willingness to shift. Analytical results on parameter setting are also given to guarantee feasibility and optimality of the proposed design. Numerical results show that when the bid–ask spread of electricity is small enough, the proposed algorithm can achieve the close-to-optimal cost asymptotically.
Keywords: Multi-energy industrial park; Peak loads shifting; Two-timescale optimization; Stochastic gradient; Fast distributed algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004901
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:317:y:2022:i:c:s0306261922004901
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119107
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().