EconPapers    
Economics at your fingertips  
 

Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints

Cephas Samende, Jun Cao and Zhong Fan

Applied Energy, 2022, vol. 317, issue C, No S0306261922005025

Abstract: In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the need to satisfy distribution network constraints, it is challenging for prosumers to obtain optimal energy trading decisions that minimize their individual energy costs. To address the challenge, we first formulate the above problem as a Markov decision process and propose a multi-agent deep deterministic policy gradient algorithm to learn optimal energy trading decisions. To satisfy the distribution network constraints, we propose distribution network tariffs which we incorporate in the algorithm as incentives to incentivize energy trading decisions that help to satisfy the constraints and penalize the decisions that violate them. The proposed algorithm is model-free and allows the agents to learn the optimal energy trading decisions without having prior information about other agents in the network. Simulation results based on real-world datasets show the effectiveness and robustness of the proposed algorithm.

Keywords: Multi-agent; Deep deterministic policy gradient; Peer-to-peer energy trading; Renewable generation; Markov decision process (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005025
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005025

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119123

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005025