Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints
Cephas Samende,
Jun Cao and
Zhong Fan
Applied Energy, 2022, vol. 317, issue C, No S0306261922005025
Abstract:
In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the need to satisfy distribution network constraints, it is challenging for prosumers to obtain optimal energy trading decisions that minimize their individual energy costs. To address the challenge, we first formulate the above problem as a Markov decision process and propose a multi-agent deep deterministic policy gradient algorithm to learn optimal energy trading decisions. To satisfy the distribution network constraints, we propose distribution network tariffs which we incorporate in the algorithm as incentives to incentivize energy trading decisions that help to satisfy the constraints and penalize the decisions that violate them. The proposed algorithm is model-free and allows the agents to learn the optimal energy trading decisions without having prior information about other agents in the network. Simulation results based on real-world datasets show the effectiveness and robustness of the proposed algorithm.
Keywords: Multi-agent; Deep deterministic policy gradient; Peer-to-peer energy trading; Renewable generation; Markov decision process (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005025
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005025
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119123
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().