Linking SDG 7 to assess the renewable energy footprint of nations by 2030
Jianjian He,
Yi Yang,
Zhongju Liao,
Anqi Xu and
Kai Fang
Applied Energy, 2022, vol. 317, issue C, No S0306261922005396
Abstract:
The United Nations’ Sustainable Development Goals (SDGs) provide a guideline for humanity to respond to an array of pressing challenges. Due to our increasing need for energy supply and more stringent standards for environmental quality, having access to affordable and clean energy has been the foremost pursuit of SDG 7. Development in renewables represents a way to achieve this goal. Here, we establish a Footprint-Driver-Scenario (FDS) framework for accounting for the renewable energy footprint of 189 global economies based on a global multi-regional input − output (MRIO) model and identifying the major drivers behind based on the logarithmic mean Divisia index (LMDI) in 1990–2015, and projecting the national renewable energy footprint by 2030 based on the Shared Socioeconomic Pathways (SSPs) scenarios. We find that total and per capita renewable energy footprint varies substantially between nations. The improvement in energy efficiency (SDG 7.3) and decline in footprint-to-energy ratio contribute to the reduction of renewable energy footprint, as opposed to the per capita GDP, population, share of renewable energy in energy mix (SDG 7.2) and proportion of population with access to electricity (SDG 7.1), all of which lead to footprint increase considerably. Despite the great progress in SDGs 7.1–7.3 by 2030, the expected goals still cannot be fully reached in any of the SSP scenarios. Our research findings can assist policy makers in better understanding the critical role of renewable energy in achieving SDG 7. The FDS framework can be potentially applied to a wide range of SDGs at the global, national and sub-national scales.
Keywords: Renewable energy footprint; Shared Socioeconomic Pathways (SSPs); Multi-regional input–output (MRIO); Logarithmic mean Divisia index (LMDI); Sustainable Development Goals (SDGs) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005396
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005396
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119167
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().