EconPapers    
Economics at your fingertips  
 

Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach

Kaijian Qi, Weigang Zhang, Wei Zhou and Jifu Cheng

Applied Energy, 2022, vol. 317, issue C, No S0306261922005517

Abstract: To comply with battery power constraint in the operation of electric vehicles, traditional methods usually estimate battery’s power capability first and then regulate vehicle’s driving torque based on the estimation. These methods have fundamental drawbacks due to their separated nature. A better way is to integrate the estimation and regulation together, which increases the model complexity of the control problem though. To tackle this issue, a reduced-order model predictive control (MPC)-based approach is proposed in this paper, where the dimension of the control model is reduced from two to one by exploiting a quasi-linear relationship between the two state variables. Rigorous mathematical justification proves that sufficient accuracy is retained as long as MPC’s prediction horizon is determined according to the initial states and battery’s polarization dynamics. The superiority of the proposed method is validated by model-in-the-loop tests, which demonstrate that the proposed method reduces the possibility of over-discharge and can make a flexible trade-off between power constraint handling and target vehicle speed tracking.

Keywords: Model predictive control; Optimal control; Battery state of power; Dynamic programming; Electric vehicles (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005517
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005517

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119179

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005517