Industrial park heat integration considering centralized and distributed waste heat recovery cycle systems
Feng Ji,
Yachao Dong,
Xiaojing Sun,
Linlin Liu and
Jian Du
Applied Energy, 2022, vol. 318, issue C, No S0306261922005724
Abstract:
The waste heat recovery cycle, such as Organic Rankine cycle and absorption refrigeration cycle, can convert waste heat to other forms of energy (heat, cooling and electricity) efficiently. Meanwhile, besides the traditional intra-plant energy utilization, the cluster of enterprises in an industrial park brings extra opportunities and benefits for the total site energy recovery and conversion. Therefore, in order to improve the energy utilization efficiency and reduce the overall cost, an optimization-based framework that enables the simultaneous integration of heat exchanger network, utility and waste heat recovery cycle systems of industrial parks is proposed in this study. Three heat integration technologies are simultaneously considered to achieve the design purpose, including the direct heat integration inside plants, the indirect heat integration across different plants, and the integration of heat exchanger network with waste heat recovery cycle systems. Two waste heat recovery cycle systems configuration modes, centralized and distributed, are proposed to achieve the flexible utilization of waste heat in industrial parks. A mathematical model in mixed integer nonlinear programming is formulated to optimize the design scheme subjecting to the objective of minimum total annualized cost. The effectiveness of the proposed method is demonstrated by two cases studies, and the applicable scenarios for the two waste heat recovery cycle modes are revealed by comparing and analyzing the economic performance of the total site systems. It is concluded that the two waste heat recovery cycle configuration modes do have specific conditions of applicability, that is, the distributed mode is the better choice if the utility cost plus transportation cost of the entire system dominates the total cost, conversely, the centralized mode is recommended. The results also indicate that the inter-plant distance is an important factor affecting decision making, so sensitivity analysis is subsequently conducted and indicates that the distributed mode is preferable only if a specific threshold of inter-plant distance is exceeded.
Keywords: Waste heat recovery cycle; Heat exchanger network; Industrial park; Centralized mode; Distributed mode (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005724
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:318:y:2022:i:c:s0306261922005724
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119207
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().