EconPapers    
Economics at your fingertips  
 

Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario

Du Wen and Muhammad Aziz

Applied Energy, 2022, vol. 319, issue C, No S0306261922006298

Abstract: In the energy system transition, energy storage technology is vital for increasing the penetration of renewables, where chemical energy storage is most suitable for long-term grid-scale energy storage. Green ammonia is selected to replace hydrogen for the sake of storage efficiency, safety, and cost. Most time, ammonia is seen as either an energy storage medium or a fuel. However, the dual identity of ammonia as an energy carrier is discussed less. So, this study conceptualizes power-to-ammonia-to-power (P2A2P) and biomass-to-ammonia-to-power (B2A2P) pathways where ammonia is served as an energy carrier for both energy storage and fuel. Eight scenarios involving recent ammonia production and utilization technologies are technically and economically evaluated based on hourly weather and demand data. The results show that the B2A2P pathway presents a better performance because the average energy and exergy efficiencies are hardly influenced by the supply and demand balance of electricity. They can reach 40–50% in contrast to 27–47% in the P2A2P pathway. Besides, the B2A2P pathway provides a considerable amount of ammonia (around 10,000 t/month), which takes the major part of revenues. Although the CAPEX (603.3–675.1 MUSD) and OPEX (30–40 MUSD) in the B2A2P pathway are much higher than that of P2A2P (159.2–181.1 and 6–9 MUSD, respectively), the optimal scenario of the B2A2P pathway has a shorter discounted payback time (six years), and higher net present value (415.5 MUSD).

Keywords: Ammonia; Energy carrier; Techno-economic analyses; Multi-generation system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006298
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006298

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119272

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006298