Parameterized deep Q-network based energy management with balanced energy economy and battery life for hybrid electric vehicles
Hao Wang,
Hongwen He,
Yunfei Bai and
Hongwei Yue
Applied Energy, 2022, vol. 320, issue C, No S0306261922006274
Abstract:
Energy management strategy (EMS) is an essential technique to ensure the long- term driving economy of hybrid electric vehicles (HEVs). The complicated discrete–continuous hybrid action space lying in HEV’s driving system presents a challenge to achieve high-performance EMSs. Thus, this paper proposes a novel improved deep Q-network (DQN)-based EMS to reduce the HEV’s driving costs, with lithium-ion battery (LIB) life and energy economy considered. Firstly, a data-driven battery life map reflecting the non-linear decaying trajectory of battery state of health (SOH) is proposed to quantify the real-time battery aging. Secondly, in the proposed EMS incorporating the battery aging model, an enhanced parameterized DQN (PDQN) algorithm is applied to particularly provide a hybrid solution discriminating between discrete and continuous actions. Finally, with the dynamic programming (DP) method employed as the benchmark, the effectiveness and optimality of the proposed EMS are validated. Without the prior knowledge of testing driving conditions, the proposed EMS effectively achieves 99.5% performance of the DP method, reducing the vehicle’s driving costs by 3.1% and extending battery life effectively. The EMS converges quickly during training and a hardware-in-loop test validates its real application potential.
Keywords: Energy management strategy (EMS); Deep Q network (DQN); Hybrid action space; Lithium-ion battery aging; Hybrid electric vehicle (HEV) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006274
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:320:y:2022:i:c:s0306261922006274
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119270
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().