Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention
Yuan Gao,
Shohei Miyata and
Yasunori Akashi
Applied Energy, 2022, vol. 321, issue C, No S0306261922006432
Abstract:
With the rapid development of high-performance computing technology, data-driven models, especially deep learning models, are being used increasingly for solar radiation prediction. However, the characteristics of the black box model lead to a lack of interpretability in their prediction results. This limits the application of the model in final optimization scenarios (such as model predictive control), as operation managers might not fully trust models lacking explanatory results. In our study, models were proposed based on the prediction model of the recurrent neural network. We hope to improve the interpretability of the models through the design and improvement of the model structure, thereby increasing the credibility of the model results. The interpretability in time and spatial dependencies of the prediction process were studied by the attention mechanism and graph neural network, respectively. Our results showed that the deep learning model, with attention, could effectively shift the attention mechanism to adapt to varying prediction target hours. The graph neural network expresses the most relevant variables in the dataset related to solar radiation through a self-learning graph structure. The results showed that solar radiation is connected directly with month, hour, temperature, penetrating rainfall, water vapor pressure, and radiation time.
Keywords: Solar radiation prediction; Interpretable deep learning; Graph neural network; Attention (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006432
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119288
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().