Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery
Zhan Liu,
Zihui Liu,
Junfei Guo,
Fan Wang,
Xiaohu Yang and
Jinyue Yan
Applied Energy, 2022, vol. 321, issue C, No S0306261922006559
Abstract:
Latent heat energy storage system provides an alternative solution to solving the imbalance problem of energy supply and demand. To improve the phase change efficiency, a novel ladder-shaped fin is proposed to accelerate melting process. Under the same mass of fin materials, two groups of fin shapes (totally eight cases) are innovatively designed. Upon being verified by experiments in literature, numerical models account for comprehensive descriptions on melting front propagation with emphasizing temperature development and free convection in the liquid phase. Results demonstrate that the ladder-shaped fins can better optimize the melting channel of phase change material than the straight fin. Compared to the original straight fin case, a maximal 52.2% of the total melting time can be saved. The angle change of fins has a significant effect on reducing the melting time of the whole PCM. In Group I where fins are arranged vertically and horizontally, the total melting time is much shorter than that of each corresponding case in Group II (45° from the vertical axis). For the original straight fin in Group II, a 36.8% reduction in total melting time is obtained if turning fins by 45°clockwise. To be conclusive, it is more beneficial to add fins to mobile heat accumulators than to have no fins, saving more energy charging time.
Keywords: Latent heat thermal storage; Phase change material; Ladder-shaped fin; Waste heat recovery; Mobilized thermal storage (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006559
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119300
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().