Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell
Houchang Pei,
Chenguang Xiao and
Zhengkai Tu
Applied Energy, 2022, vol. 321, issue C, No S030626192200695X
Abstract:
Water management is critical to the operation of a proton exchange membrane fuel cell (PEMFC). The accumulation of water in the cathode channel of a newly designed transparent PEMFC is investigated in this work. The electric quantity per square metre (qe) produced by electrochemical reaction is used to estimate the liquid water formation characteristics. Results show that the water produced by the electrochemical reaction first exists in a gaseous state in the flow channel and then transforms to liquid water.Liquid water begins to appear in the flow channel when qe reaches approximately 1.8 × 105 C·m−2 in different current density and loading rate. However, a higher current density and loading rate would decrease liquid water forming time of the fuel cell channel. In addition, cell temperature affects the qe value, and when the cell temperature rises from 45 to 75 °C, qe decreases from 2.25 × 105 to 1.5 × 105 C·m−2; the amount of charge is approximately inversely proportional to the cell temperature. Liquid water first appears at the inlet of the flow channel, specifically at the contact point between the inlet flow channel and carbon paper. Liquid water is concentrated at the edge channel of the flow field area and rarely distributed in the middle of the single cell.
Keywords: Proton exchange membrane fuel cell; Visualisation; Water formation; Water distribution; Electric quantity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192200695X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s030626192200695x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119349
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().