EconPapers    
Economics at your fingertips  
 

Investigation of a radiative sky cooling module using phase change material as the energy storage

Soroush Kiyaee, Pooria Khalilmoghadam, Mohammad Behshad Shafii, Alireza Z. Moshfegh and Mingke Hu

Applied Energy, 2022, vol. 321, issue C, No S0306261922007012

Abstract: Radiative sky cooling (RSC) systems have enjoyed a privileged position in the research community due to generating cooling energy without consuming electricity using the open atmospheric window and infrared emission to the sky. However, the system's justification occurs when it reaches a temperature below the minimum 24-hour ambient temperature. This study utilizes phase change materials (PCM) as the energy storage of a hybrid daytime photovoltaic-thermal and nighttime RSC module and investigates the nocturnal cooling energy-saving potential of the system at different phase transition temperatures. After being validated by the experimental data in the literature, the simulated model was used for examining the exergy and energy efficiencies of PCMs with varying phase transition temperatures. The comparison of the exergy efficiency in the radiative sky cooling systems was performed for the first time, revealing the simultaneous effect of the temperature drop and cooling power to specify the optimal operative point of the system. Based on the climatic conditions of the simulation site, the PCM with phase transition temperatures of 18 °C revealed the peak and average exergy efficiencies of 42.8% and 33.7%, respectively. Likewise, the 23 °C PCM recorded the maximum cooling power of about 49.9 W/m2, and the 15 °C PCM achieved the highest temperature drop of about 14.8 °C.

Keywords: Radiative sky cooling; Exergy analysis; Phase change material; Passive cooling; Energy storage (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007012
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007012

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119357

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007012