EconPapers    
Economics at your fingertips  
 

Physics-encoded deep learning in identifying battery parameters without direct knowledge of ground truth

Bin Wu, Buyi Zhang, Changyu Deng and Wei Lu

Applied Energy, 2022, vol. 321, issue C, No S0306261922007280

Abstract: We show a method to embed physical laws and on-line observation into machine learning so that irrelevant low-cost battery data can be utilized to identify complex system parameters by machine learning without knowledge of their ground truth as the training data. Lithium diffusivity, a complicated function of lithium concentration, is a crucial parameter for battery performance but difficult to measure directly. We take diffusivity as an example and show that it can be obtained from easily measured sequence of battery voltage over time. In simulations, our results show that this method accurately quantifies not only the diffusivities of both positive and negative electrodes, but also as complex non-linear functions of lithium concentration, purely based on the cell voltage data requiring neither diffusivity nor concentration measurement. Notably, it can accurately predict non-monotonic, many-to-one relations such as “w” shape functions. Moreover, this method is immune to measurement noise and capable of simultaneously estimating multiple parameters. In experiments, our method demonstrates more robust diffusivity estimation than a pure physics-based parameter fitting method and a widely used experimental technique. Our results suggest that the approach enables identifying physical parameters and their interdependence without direct measurements of those parameters.

Keywords: Machine learning; Physics-based model; Parameter estimation; Diffusion; On-line observation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007280
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007280

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119390

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007280