EconPapers    
Economics at your fingertips  
 

Long-term stochastic model predictive control for the energy management of hybrid electric vehicles using Pontryagin’s minimum principle and scenario-based optimization

Andreas Ritter, Fabio Widmer, Pol Duhr and Christopher H. Onder

Applied Energy, 2022, vol. 322, issue C, No S0306261922005608

Abstract: This paper presents a new approach to efficiently integrate long prediction horizons subject to uncertainty into a stochastic model predictive control (MPC) framework for the energy management of hybrid electric vehicles. By exploiting Pontryagin’s minimum principle, we show that the energy supply required to obtain a certain change in the state of charge (SOC) of the battery can be approximated using a quadratic equation. The parameters of these mappings depend on the power request imposed by the driving mission and thus allow to compress the time-resolved power profile into only three scalar variables. Having a driving mission divided into several segments of arbitrary length, the corresponding sequence of quadratic approximations allows to reformulate the original energy management problem as a quadratic program, which offers an efficient way to include a large number of future scenarios. The resulting scenario-based stochastic MPC approach prevents SOC boundary violations with a certain probability, which can be controlled by the number of scenarios considered. To validate the quadratic approximation, we study two numerical examples using two different vehicles, a series hybrid electric passenger car and a battery-assisted trolley bus. Finally, a case study based on the operation of the latter is provided, which demonstrates the expected behavior and the real-time capability of the stochastic MPC approach. While the SOC is maintained in predefined boundaries with high probability, the required energy supply is only increased by 1.41% compared to the non-causal optimum.

Keywords: Hybrid electric vehicles; Energy management system; Model predictive control; Scenario optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005608
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922005608

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119192

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922005608