Long-term stochastic model predictive control for the energy management of hybrid electric vehicles using Pontryagin’s minimum principle and scenario-based optimization
Andreas Ritter,
Fabio Widmer,
Pol Duhr and
Christopher H. Onder
Applied Energy, 2022, vol. 322, issue C, No S0306261922005608
Abstract:
This paper presents a new approach to efficiently integrate long prediction horizons subject to uncertainty into a stochastic model predictive control (MPC) framework for the energy management of hybrid electric vehicles. By exploiting Pontryagin’s minimum principle, we show that the energy supply required to obtain a certain change in the state of charge (SOC) of the battery can be approximated using a quadratic equation. The parameters of these mappings depend on the power request imposed by the driving mission and thus allow to compress the time-resolved power profile into only three scalar variables. Having a driving mission divided into several segments of arbitrary length, the corresponding sequence of quadratic approximations allows to reformulate the original energy management problem as a quadratic program, which offers an efficient way to include a large number of future scenarios. The resulting scenario-based stochastic MPC approach prevents SOC boundary violations with a certain probability, which can be controlled by the number of scenarios considered. To validate the quadratic approximation, we study two numerical examples using two different vehicles, a series hybrid electric passenger car and a battery-assisted trolley bus. Finally, a case study based on the operation of the latter is provided, which demonstrates the expected behavior and the real-time capability of the stochastic MPC approach. While the SOC is maintained in predefined boundaries with high probability, the required energy supply is only increased by 1.41% compared to the non-causal optimum.
Keywords: Hybrid electric vehicles; Energy management system; Model predictive control; Scenario optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922005608
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922005608
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119192
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().