All-day continuous electrical power generator by solar heating and radiative cooling from the sky
Li Yu,
Zhiyuan Xi,
Shuang Li,
Dan Pang,
Hongjie Yan and
Meijie Chen
Applied Energy, 2022, vol. 322, issue C, No S0306261922007401
Abstract:
Thermoelectrical power generator (TEG) proves a promising way that utilizes ambient energy. However, all-day continuous power generation without an artificial heat source by the TEG remains a challenge. In this work, TEG is integrated with a selective solar absorber (SSA) to absorb heat from the heat source (i.e., the sun) and a passive daytime radiative cooling (PDRC) coating to release the heat towards the cold source (i.e., the outer space), providing all-day electrical power generation continuously. A theoretical model is proposed to investigate the all-day performance and design the device parameters (such as load ratio, area ratio, solar intensity, and convective heat transfer rate). It is found that the output power density peaks when the load ratio γ = 1.1 at the area ratio α = 1. Indoor experiments show that the output power in the nighttime and daytime can be 4 mW m−2 and 489 mW m−2 respectively while the outdoor results drop to 0.8 mW m−2 and 91 mW m−2 respectively without any thermal management. In addition, the thermodynamic limit in the nighttime and daytime can be 65 mW m−2 and 145 W m−2 respectively by replacing the TEG with a Carnot engine. These results provide a novel approach to unitizing the solar heating and out space cooling through the selective absorber/emitter, generating 24-h continuous electrical power for unsupervised small devices and remote areas.
Keywords: Thermoelectric; Solar heating; Radiative cooling; Coating (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007401
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007401
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119403
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().