Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis
Akhilesh Gandhi,
Manali S. Zantye and
M.M. Faruque Hasan
Applied Energy, 2022, vol. 322, issue C, No S0306261922007498
Abstract:
Energy storage allows flexible use and management of excess electricity and intermittently available renewable energy. Cryogenic energy storage (CES) is a promising storage alternative with a high technology readiness level and maturity, but the round-trip efficiency is often moderate and the Levelized Cost of Storage (LCOS) remains high. The complex flowsheets with intricate thermodynamics at cryogenic temperatures as well as the presence of multiple loops and refrigeration cycles pose considerable challenges for rigorous model-based design and optimization of CES systems. We present an optimization strategy that couples rigorous process simulation and Bayesian optimization with flowsheet decomposition and identification of hidden coupling constraints to optimally design standalone CES systems. Further refinement is done via a local search using the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. Our results indicate that it is possible to achieve more than 52% round-trip efficiency and an LCOS of $153/MWh for a standalone 100 MW/400 MWh CES system limited to short-term storage with daily charging–discharging. However, a detailed techno-economic assessment reveals that the LCOS considering total capital investment may exceed $267/MWh when all direct and indirect costs of installation and operation are considered.
Keywords: Cryogenic energy storage; Bayesian optimization; Simulation-based optimization; LCOS; Techno-economic analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007498
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007498
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119413
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().