Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems
Ji Zhang,
Zhi Cao,
Sheng Huang,
Xiaohui Huang,
Kun Liang,
Yan Yang,
Haoran Zhang,
Mi Tian,
Mohammad Akrami and
Chuang Wen
Applied Energy, 2022, vol. 322, issue C, No S0306261922007516
Abstract:
The present work proposes an integration of a novel fin structure and Al2O3 nanoparticles as an enhancement technology to improve the melting performance of phase change materials (PCMs) for latent heat thermal energy storage systems. A mathematical model of the melting process of PCMs with nanoparticles in a triple-tube heat exchanger is formulated and validated against the experimental data. The effect of different fin layouts and different volume fractions of nanoparticles on the melting process is discussed and reported, including the evolution and deformation of solid–liquid interfaces, the distribution of isotherms, and the time-varying profile of liquid fraction and average temperature over the entire melting process. The results indicate that the melting characteristic is improved by applying the enhanced strategies of novel fins and nanoparticles. Compared to the original structure, the melting time of four different novel fins is reduced by 80.35%, 77.62%, 77.33%, and 80.65%, respectively, which are attributed to the heat transfer enhancement by adding fin configurations to the system. Al2O3 nanoparticles (at 3%, 6%, and 9%) are integrated into the PCMs, and the results show that the melting time is decreased by 13.1%, 15.6%, and 18.8%, respectively. It can be concluded that the combination of fins and nanoparticles is an efficient way to enhance the meting process of phase change materials for thermal energy storage systems.
Keywords: Energy storage; Phase change material; Melting performance; Fins; Nanoparticles; Heat transfer enhancement (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007516
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007516
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119416
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().