EconPapers    
Economics at your fingertips  
 

Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems

Ji Zhang, Zhi Cao, Sheng Huang, Xiaohui Huang, Kun Liang, Yan Yang, Haoran Zhang, Mi Tian, Mohammad Akrami and Chuang Wen

Applied Energy, 2022, vol. 322, issue C, No S0306261922007516

Abstract: The present work proposes an integration of a novel fin structure and Al2O3 nanoparticles as an enhancement technology to improve the melting performance of phase change materials (PCMs) for latent heat thermal energy storage systems. A mathematical model of the melting process of PCMs with nanoparticles in a triple-tube heat exchanger is formulated and validated against the experimental data. The effect of different fin layouts and different volume fractions of nanoparticles on the melting process is discussed and reported, including the evolution and deformation of solid–liquid interfaces, the distribution of isotherms, and the time-varying profile of liquid fraction and average temperature over the entire melting process. The results indicate that the melting characteristic is improved by applying the enhanced strategies of novel fins and nanoparticles. Compared to the original structure, the melting time of four different novel fins is reduced by 80.35%, 77.62%, 77.33%, and 80.65%, respectively, which are attributed to the heat transfer enhancement by adding fin configurations to the system. Al2O3 nanoparticles (at 3%, 6%, and 9%) are integrated into the PCMs, and the results show that the melting time is decreased by 13.1%, 15.6%, and 18.8%, respectively. It can be concluded that the combination of fins and nanoparticles is an efficient way to enhance the meting process of phase change materials for thermal energy storage systems.

Keywords: Energy storage; Phase change material; Melting performance; Fins; Nanoparticles; Heat transfer enhancement (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007516
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007516

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119416

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007516