Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system
Haojie Sun,
Guoyao Yu,
Wei Dai,
Limin Zhang and
Ercang Luo
Applied Energy, 2022, vol. 322, issue C, No S0306261922007681
Abstract:
This paper proposes a novel resonance tube-coupled free-piston Stirling engine-based combined cooling and power (FPS-CCP) system for future application in scavenging unconventional natural gas from coal mines and oil fields. Unlike the traditional duplex Stirling system, the proposed system employs a resonance tube to couple an engine and a cryocooler. In addition, a linear alternator is introduced to facilitate startup and meet multiple demands, resulting in flexible adjustments and even higher exergy efficiency. A novel time-domain unsteady model based on thermoacoustic theory was developed to investigate the onset behavior of the (FPS-CCP) system. The proposed model successfully predicted the onset temperature and onset frequency. Results indicated that within the calculation range, the resonance tube with either a larger diameter or a shorter length leads to a lower onset temperature. Furthermore, the system performance under the steady-oscillating state was studied in terms of the typical operation characteristics and energy flow distribution. When the heating temperature is 833 Kand the mean pressure of helium gas is 5 MPa, the proposed system can provide a cooling capacity of 1000 W at 110 K and an electric power of 800 W with a global exergy efficiency of 29.4%, demonstrating an efficient power matching among the subsystems.
Keywords: free-piston Stirling engine; combined cooling and power (CCP); Onset characteristic; Thermoacoustic (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007681
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007681
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119437
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().