Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack
Meiting Guo,
Xiao Ru,
Lin Yang,
Meng Ni and
Zijing Lin
Applied Energy, 2022, vol. 322, issue C, No S0306261922007917
Abstract:
Thermal stress-induced mechanical failure is a critical issue for practical application of solid oxide fuel cells (SOFCs). Due to the lack of study on the thermo-mechanical behavior of SOFC with different methane steam pre-reforming ratios (R), a 3D thermo-mechanical model is developed to systematically evaluate the mechanical performance of SOFC running on methane fuel. The model fully considers the coupled transport and reaction processes in the SOFC. The numerically obtained temperature is imported to a mechanical sub-model to determine the thermal stress and strain of SOFC components under various operating conditions, namely with different R values. Covering all R conditions, glass–ceramic sealant is the most dangerous component, while cathode is in sub-critical state. When R < 0.4, the electrolyte has the minimum failure probability. When R > 0.4, the anode becomes the safest component in SOFC stack. With the increase of R, the failure probability of anode decreases all the way and always stays in the safe range, while first decreases then increases for electrolyte, cathode and sealant. R within range of 0.4–0.7 is favorable for the reliability of the whole SOFC stack. This study is useful for identifying optimal operating conditions for efficient and stable operation of SOFC running on alternative hydrocarbon fuels.
Keywords: Solid oxide fuel cell stack; Multiphysics coupling; Pre-reforming ratio; Failure probability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007917
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007917
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119464
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().