Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression
Xiaojia Su,
Bingxiang Sun,
Jiaju Wang,
Weige Zhang,
Shichang Ma,
Xitian He and
Haijun Ruan
Applied Energy, 2022, vol. 322, issue C, No S0306261922008376
Abstract:
Accurate capacity estimation is critical to improving the safety and reliability of lithium-ion (Li-ion) battery systems. Traditional capacity estimation mainly extracts capacity-related features by passively collecting the battery voltage, current, and temperature signals, which requires high integrity and regularity of charging curves. In this paper, six health indicators (HIs) are extracted through the online identification of Low-frequency electrochemical impedance spectroscopy (LEIS) by step wave, combined with Gaussian process regression (GPR) to achieve a fast capacity estimation for Li-ion batteries. The step wave is injected into the battery system during the charging process through BMS and bi-directional converter cooperation. Compared with square and multi-sine waves, the stress and response of each frequency step wave are equivalent to that of the sine wave. Moreover, HIs are resolved from the actual Warburg impedance angle instead of the empirical angle π/4. Three novel HIs related to the Li-ion diffusion coefficient are proposed: Warburg factor Wd, pseudo-Li-ion diffusion state PLDS and residual signal of empirical mode decomposition PLDSr. The volume of GPR training data is only 34% of the whole frequency band EIS data. The results show that the identified LEIS achieves 0.96 goodness-of-fit (R2) at the minimum sampling frequency of 50 Hz, and the novel HIs significantly improve the state of health (SOH) estimation accuracy with R2 above 0.95, root mean squared error below 1%, and mean absolute percentage error of about 0.9%. This method is an effective way to the active SOH detection for Li-ion battery, which is vital for the online SOH evaluation and early safety warning.
Keywords: Lithium-ion battery; Fast capacity estimation; Low-frequency electrochemical impedance spectroscopy (LEIS); Online identification; Step wave; Empirical mode decomposition (EMD); Gaussian process regression (GPR) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922008376
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008376
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119516
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().