EconPapers    
Economics at your fingertips  
 

A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack

Shuzhi Zhang, Shiyong Jiang, Hongxia Wang and Xiongwen Zhang

Applied Energy, 2022, vol. 322, issue C, No S030626192200856X

Abstract: Considering the limitations in existing correlation coefficient-based, entropy-based and big data analysis-based voltage sensor fault diagnosis methods, we develop a novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack in this paper. Firstly, a “ohmic resistance”-based selection method is periodically performed to artificially divide all in-pack cells into “representative cell” and non-representative cells. Secondly, during the “representative cell”-based battery pack state-of-charge (SOC) and cell SOC inconsistence estimation process, the measurement innovation (MI) between measured and estimated voltage of the “representative cell” and non-representative cells is generated in micro time-scale and macro time-scale, respectively. Regarding the “representative cell”, the faulty voltage sensor is immediately detected at the moment of the voltage sensor fault occurrence by catching the abnormal MI. As for the non-representative cells, through analyzing the discreteness degree of generated MI under faultless and faulty voltage sensors, an abnormal variance-based voltage sensor fault diagnosis method and an abnormal variance contribution-based fault location method are developed. The validation results through three sophisticated cases demonstrate that this method can rapidly catch the abnormal features for further voltage sensor fault diagnosis with low complexity and satisfactory robustness even though there exist certain faulty current.

Keywords: Voltage sensor fault diagnosis; Dual time-scale; State-of-charge estimation; Measurement innovation generation; Discreteness analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192200856X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s030626192200856x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119541

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:322:y:2022:i:c:s030626192200856x