EconPapers    
Economics at your fingertips  
 

A graph policy network approach for Volt-Var Control in power distribution systems

Xian Yeow Lee, Soumik Sarkar and Yubo Wang

Applied Energy, 2022, vol. 323, issue C, No S0306261922008479

Abstract: Volt-var control (VVC) is the problem of operating power distribution systems within healthy regimes by controlling actuators in power systems. Existing works have mostly adopted the conventional routine of representing the power systems (a graph with tree topology) as vectors to train deep reinforcement learning (RL) policies. We propose a framework that combines RL with graph neural networks and study the benefits and limitations of graph-based policy in the VVC setting. Our results show that graph-based policies converge to the same rewards asymptotically, however at a slower rate when compared to vector representation counterpart. We conduct further analysis on the impact of both observations and actions: On the observation end, we examine the robustness of graph-based policies on two typical data acquisition errors in power systems, namely sensor communication failure and measurement misalignment. Furthermore, we study the robustness of graph-based policies to erroneous topological information in the graph representation. Our results reveal that graph-based policies are significantly more robust than policies with conventional dense network representations. On the action end, we show that actuators have various impacts on the system, thus using a graph representation induced by the physical power systems topology may not be the optimal choice. In the end, we conduct a case study to demonstrate that the choice of readout function architecture and graph augmentation can further improve training performance and robustness.

Keywords: Volt-Var Control; Deep reinforcement learning; Graph neural networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922008479
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008479

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119530

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008479