Power-to-gas: Decarbonization of the European electricity system with synthetic methane
Hasan Ümitcan Yilmaz,
Steven O. Kimbrough,
Clemens van Dinther and
Dogan Keles
Applied Energy, 2022, vol. 323, issue C, No S0306261922008546
Abstract:
The general conclusion of climate change studies is the necessity of eliminating net CO2 emissions in general and from the electric power systems in particular by 2050. The share of renewable energy is increasing worldwide, but due to the intermittent nature of wind and solar power, a lack of system flexibility is already hampering the further integration of renewable energy in some countries. In this study, we analyze if and how combinations of carbon pricing and power-to-gas (PtG) generation in the form of green power-to-hydrogen followed by methanation (which we refer to as PtG throughout) using captured CO2 emissions can provide transitions to deep decarbonization of energy systems. To this end, we focus on the economics of deep decarbonization of the European electricity system with the help of an energy system model. In different scenario analyses, we find that a CO2 price of 160 €/t (by 2050) is on its own not sufficient to decarbonize the electricity sector, but that a CO2 price path of 125 (by 2040) up to 160 €/t (by 2050), combined with PtG technologies, can lead to an economically feasible decarbonization of the European electricity system by 2050. These results are robust to higher than anticipated PtG costs.
Keywords: Power-to-gas; Decarbonization; Electricity system; Energy system modeling; Carbon pricing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922008546
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008546
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119538
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().