EconPapers    
Economics at your fingertips  
 

What drives the accuracy of PV output forecasts?

Thi Ngoc Nguyen and Felix Müsgens

Applied Energy, 2022, vol. 323, issue C, No S0306261922009102

Abstract: In this paper, 180 papers on photovoltaic (PV) output forecasting were reviewed and a database of forecast errors was extracted for statistical analysis. The paper shows that among the forecast models, hybrid models are most likely to become the primary form of PV output forecasting in the future. The use of data processing techniques is positively correlated with the forecast quality, while the lengths of the forecast horizons and out-of-sample test sets have negative effects on the forecast accuracy. The paper also found that the use of data normalization, the wavelet transform, and the inclusion of clear sky index and numerical weather prediction variables are the most effective data processing techniques. Furthermore, the paper found some evidence of “cherry picking” in the reporting of errors and we recommend that the test sets be at least one year long to avoid any distortion in the performance of the models.

Keywords: Solar energy forecasting; Photovoltaics forecasting; Evaluating forecasts; Forecasting practice; Model selection; Statistical analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009102

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119603

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009102