EconPapers    
Economics at your fingertips  
 

A hybrid attention-based deep learning approach for wind power prediction

Zhengjing Ma and Gang Mei

Applied Energy, 2022, vol. 323, issue C, No S0306261922009138

Abstract: Renewable energy, especially wind power, is a practicable and promising solution to mitigate the existing dilemma associated with climate change. Efficient and accurate prediction of wind power could guide a variety of decisions for resource management. To improve the accuracy of wind power prediction, most existing studies are multistage, where signal processing methods are first employed to decompose a single time series, and then deep learning methods are utilized for prediction. The aforementioned approaches have shown satisfactory results but tend to involve a burdensome time series decomposition process. To address this problem, this paper proposes a hybrid attention-based deep learning approach to achieve more efficient and accurate wind power prediction. The essential idea behind the proposed approach is to incorporate the cumbersome decomposition process into a hybrid deep learning model consisting of different deep neural networks, where each deep neural network is designed to perform a specific part of the prediction task to maximize its corresponding advantages. Compared with the typical deep learning models for time series prediction, e.g., long short-term memory (LSTM) and gated recurrent units (GRU), the proposed deep learning model has the following two major advantages: (1) the model eliminates the time series decomposition process by time embedding layers to achieve efficient prediction, and (2) the model achieves more powerful high-level temporal feature extraction by leveraging the combination of a convolutional neural network (CNN), multiple stacked bidirectional long short-term memory (Bi-LSTM) networks, and the attention mechanism, thus providing high accuracy prediction. The proposed method is evaluated with a real-world wind power dataset in Turkey, and comparative experiments demonstrate the effectiveness and applicability of the proposed method.

Keywords: Renewable energy; Wind power prediction; Deep learning; Attention mechanism; Long short-term memory; Bidirectional learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009138
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009138

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119608

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009138