Exsolution of phase-separated nanoparticles via trigger effect toward reversible solid oxide cell
Seungyeon Jo,
Yo Han Kim,
Hyeongwon Jeong,
Chan-ho Park,
Bo-Ram Won,
Hyejin Jeon,
Kang Taek Lee and
Jae-ha Myung
Applied Energy, 2022, vol. 323, issue C, No S0306261922009199
Abstract:
The electrocatalytic characteristics of heterostructure nanoparticles have attracted attention for use in devices addressing energy and environmental issues. Among the various features, exsolved alloy or core–shell nanoparticles display high reactive surface area and strong interaction between the metal and substrate oxide. Herein, we report multifunctional heterostructure nanoparticles, namely Fe/Cu Janus nanoparticles (JN) and verify an exsolution trigger effect using Cu as a seed in the La0.43Sr0.37Fe0.09Cu0.03Ti0.88O3-δ (Fe75) perovskite substrate. During the exsolution process, the exsolved Cu particles played a key role in triggering the Fe exsolution by contributing additional surface energy. These Fe/Cu JNs exhibited outstanding catalytic activity in a reversible solid oxide cell fed with H2O/H2 and CO/CO2 fuels. A single cell with Fe75 showed an impressive current density of − 1.11 A cm−2 at 1.3 V and 900 °C. Our study experimentally elucidated the mechanism of the triggering of co-exsolution and demonstrated a multifunctional catalyst using Fe/Cu JNs.
Keywords: Co-exsolution; Heterostructure nanoparticle; Janus structure; Seeded effect; Exsolution trigger (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009199
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119615
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().