EconPapers    
Economics at your fingertips  
 

Probability density function forecasting of residential electric vehicles charging profile

Ali Jamali Jahromi, Mohammad Mohammadi, Shahabodin Afrasiabi, Mousa Afrasiabi and Jamshid Aghaei

Applied Energy, 2022, vol. 323, issue C, No S0306261922009205

Abstract: Residential electric vehicle (REV) is an advanced technology with a rapid growth rate in transportation and electric grids. One key challenge in the operation of REVs is the necessity of the accurate, reliable, and practical forecasting method to provide accurate information of the charging profile in the look-ahead hours. In power system, in order to optimize the production and consumption as much as possible, in addition to accurately predicting the amount of electricity consumption, it is necessary for the stability of the grid to take into account the imminent probabilities. This paper presents the main principle of the probability density function forecasting approach in residential electric vehicle (REV) charging profile. To this end, an end-to-end deep learning structure is designed and integrated with kernel density estimation (KDE). The designed network is composed of four major blocks, i.e., convolutional layers to extract full spatial features, gated recurrent unit (GRU) to fully understand the temporal features as a time-efficient version of the gated deep network, an autoregressive (AR) to model the long patterns including battery type, REV type, and number of REVs and kernel density estimator block. Furthermore, to improve the learning ability of the designed network, an attention mechanism is integrated into the design network. The numerical results on the actual REVs (about 348 REVs) demonstrate the effectiveness and superiority of the proposed network through several cases and comparison with several well-known deep and shallow-based methods.

Keywords: Deep learning; Residential electric vehicle; Probabilistic forecasting; Kernel density estimator (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009205
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009205

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119616

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009205