EconPapers    
Economics at your fingertips  
 

Air starvation of proton exchange membrane fuel cells and its beneficial effects on performance

Hang Su, Donghao Ye, Yuanqi Cai and Wei Guo

Applied Energy, 2022, vol. 323, issue C, No S030626192200928X

Abstract: Air starvation occurring in a proton exchange membrane fuel cell will result in voltage drop and even a slightly reversal. However, a short period of air starvation may have a beneficial effect on the cell. In this paper, single cells are used to simulate the air starvation of a single cell in the stack and the related phenomena are studied. The experimental results show that when the starvation occurs in a single cell, the larger the output current, the more negative the voltage, the more obvious the hydrogen pumping; When the starvation occurs in the whole stack, the current and voltage of the cell and the amount of hydrogen pumping are only related to the hydrogen concentration on both sides of the cell. Subsequent research on single starved cell found that after a short period of 100 s of starvation, the cell's performance has improved, with an average increase of 22.3%@1500 mA/cm2, and ECSA of the catalyst increased slightly. The characterization of the catalyst before and after the air starvation found that the catalyst was not destroyed, indicating that the short-term air starvation will not damage the cell, but will improve the performance of it.

Keywords: PEMFC; Air starvation; Hydrogen pumping; Performance improvement (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192200928X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s030626192200928x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119626

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:323:y:2022:i:c:s030626192200928x