Hybrid energy sharing considering network cost for prosumers in integrated energy systems
Ruizhi Li,
Xiaohe Yan and
Nian Liu
Applied Energy, 2022, vol. 323, issue C, No S0306261922009291
Abstract:
The integrated energy system (IES) is developed to enhance the flexibility and efficiency of prosumers in the energy system. However, the current energy sharing method normally focuses on the energy cost and ignores the network cost, which constitutes a quarter of the prosumers’ electricity bills. It impacts energy sharing significantly. This paper proposes a hybrid energy sharing strategy for prosumers considering the electric and thermal network cost, to reduce the total cost. Firstly, the total cost of the prosumer is modelled based on joint energy-network cost. Secondly, the impact of uncertainty from renewables on the total cost is evaluated via the conditional value at risk. Thirdly, the non-cooperative game among prosumers is modelled and the existence of pure strategy equilibrium is proved. Then, the iterated best response algorithm based on differential evolution using limited information is proposed to protect personal privacy. Finally, the rationality and effectiveness of the model and the optimization method are verified by a coupled electricity-heat IES. The results show that the proposed model can reduce the energy consumption cost of prosumers and improve the penetration of renewable energy.
Keywords: Integrated energy system; Prosumer; Network cost; Non-cooperative game; Hybrid energy sharing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009291
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009291
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119627
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().