Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads
Tingsheng Zhang,
Xiaoping Wu,
Yajia Pan,
Dabing Luo,
Yongsheng Xu,
Zutao Zhang,
Yanping Yuan and
Jinyue Yan
Applied Energy, 2022, vol. 323, issue C, No S0306261922009710
Abstract:
To ensure the efficient and safe operation of train transportation systems, the track vibration resulting from train movement can be utilized to power the sensors for intelligent applications. This paper presents a vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads. The energy-recycling system includes a vibration conversion module, a generator module and a power storage module. The irregular vertical vibrations produced by contact between the wheel and railroad are considered. The vibration conversion module converts the reciprocating vertical displacement into a one-way rotation through a scissor linkage and slider mechanism. A three-phase generator is coupled with an energy conversion module shaft and generates a three-phase direct current. Then, after rectification and filtering, the electricity is stored in the supercapacitors. Theoretical analysis, dynamic model analysis and mechanical simulation verify the dynamic response of the system under input excitation. Furthermore, mechanical testing and sensing (MTS) machine tests yield a 73.38% maximum mechanical efficiency with a 7.44 W peak power. Moreover, the charging tests of the proposed system with a supercapacitor indicate that the proposed system is suitable for self-powered sensors in railroads.
Keywords: Track vibration; Energy harvesting; Energy recycling; Freight train; Self-powered sensors (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009710
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009710
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119673
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().