EconPapers    
Economics at your fingertips  
 

Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage

Catherine Callas, Sarah D. Saltzer, J. Steve Davis, Sam S. Hashemi, Anthony R. Kovscek, Esuru R. Okoroafor, Gege Wen, Mark D. Zoback and Sally M. Benson

Applied Energy, 2022, vol. 324, issue C, No S0306261922009667

Abstract: Carbon capture and sequestration (CCS) is playing a role in mitigating carbon emissions and that role is expected to grow dramatically with time. Clustering CO2 sources and sinks through hubs is one way to achieve large-scale deployment of CCS and widespread decarbonization of the energy sector. A key element to the success of hub projects is finding a suitable sequestration site to store these combined emissions. In this study, a quantitative, criteria-driven methodology was developed to assess the potential suitability of depleted oil and gas reservoirs for carbon storage. The methodology utilizes a three-stage process that screens, ranks, and characterizes potential sites based on three categories: (1) capacity and injectivity optimization, (2) retention and geomechanical risk minimization, and (3) siting and economic constraints. Many potential sites are assessable using this methodology until an optimal depleted reservoir, or geographically adjacent set of reservoirs, is identified. The framework is designed to provide insights into the suitability of depleted reservoirs in a variety of different geological environments as well as to be adaptable to a project’s specifications. Specifically, the criteria-driven workflow was applied to fields in the Gulf of Mexico and screened 1,317 fields to identify 10 clusters of 31 fields for further assessment and then ranked those fields and clusters to identify the most suitable sites for secure storage.

Keywords: Carbon storage; Geological formations; Site selection; Screening parameters; Scoring system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009667
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:324:y:2022:i:c:s0306261922009667

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119668

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922009667