EconPapers    
Economics at your fingertips  
 

M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions

Lei Wang and Yigang He

Applied Energy, 2022, vol. 324, issue C, No S0306261922009709

Abstract: In recent years, wind power has continued to emerge as a key source of renewable energy. When large-scale wind farm clusters are connected to the grid for power generation, accurate multi-location ultra-short-term wind power predictions carry significant value in terms of ensuring the safety, stability, and economical operation of the power system. However, there are complex temporal and spatial correlations among multiple wind farms in multiple locations, which makes wind power predictions involving wind farm clusters very challenging. The development of artificial intelligence technology, especially graph machine learning, provides new approaches for modeling such spatiotemporal correlations. In addition, compared with single-step forecasting, multi-step forecasting can better reflect the general situation, and thus, it is more widely applicable in reality. To optimize multi-step wind power predictions in multiple locations, this report proposes a Multi-Modal Multi-Task Spatiotemporal Attention Network (M2STAN) model. The developed model employs a graph attention network and a bidirectional gated recurrent unit (Bi-GRU) to model the spatial and temporal dependence, respectively. In addition, the introduction of multi-modal and multi-task learning strategies improves the accuracy and computational efficiency of this predictive model. The results indicate that the proposed method is superior to existing methods, including support vector regression, Bi-GRU, multi-modal multi-task graph spatiotemporal networks, and graph convolutional deep learning architectures in terms of prediction performance.

Keywords: Wind power prediction; M2STAN; Graph attention network; Multi-modal learning; Multi-task learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009709
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:324:y:2022:i:c:s0306261922009709

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119672

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922009709