Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA
Mina Ma,
Xiaoyu Li,
Wei Gao,
Jinhua Sun,
Qingsong Wang and
Chris Mi
Applied Energy, 2022, vol. 324, issue C, No S030626192200976X
Abstract:
Various faults of the lithium-ion battery threaten the safety and performance of the battery system. The early faults are difficult to detect and isolate owing to unobvious abnormality and the nonlinear time-varying characteristics of the battery. Herein, a multi-fault diagnosis strategy is proposed that focuses on detecting and isolating different types of faults, and estimating fault waveforms of the battery, including inconsistency evaluation, virtual connection fault, and external short circuit. First, the principal component analysis (PCA) model of the battery is established and the contribution is employed to detect the abnormity in the battery pack. Once the fault is detected, the parallel kernel principal component analysis (KPCA) technology is adopted to reconstruct the fault waveform of the battery parameters, including ohmic resistance, terminal voltage, and open-circuit voltage. These parameters are jointly taken as fault indexes improving the reliability of fault diagnosis. Finally, the proposed method is verified using amounts of tested data of eight cells in series. The results indicate that the contribution-based PCA method can accurately detect the fault. Furthermore, the reconstruction-based parallel PCA-KPCA can accurately estimate the fault waveform of the faulty battery, which helps investigate the fault degree and causes.
Keywords: Lithium-ion battery safety; Inconsistency; Connection fault; External short circuit; Fault diagnosis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192200976X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:324:y:2022:i:c:s030626192200976x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119678
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().