EconPapers    
Economics at your fingertips  
 

A three-level framework for strategic participation of aggregated electric vehicle-owning households in local electricity and thermal energy markets

Saeed Zeynali, Nima Nasiri, Sajad Najafi Ravadanegh and Mousa Marzband

Applied Energy, 2022, vol. 324, issue C, No S0306261922010340

Abstract: The impact of electric vehicles (EV) charging strategy will not be limited to power systems as integrated electricity, natural gas and thermal energy systems have become increasingly interconnected. We introduce a three-level framework for the aggregated electric vehicle-owning households (AEVH) to strategically participate in local electricity and thermal energy markets as a price-maker, while considering the strategic behavior of the integrated energy service provider (IESP) in the wholesale electricity market (WEM) also as a price-maker. The AEVH operator forms the first level, while IESP and WEM operators are integrated at the second and third levels, respectively. To solve the three-level problem, the second and third levels are modified as a single-level problem through the Karush–Kuhn–Tucker (KKT) conditions, then the equilibrium point of the resulting single-level problem and the first level is achieved through two-step iterative method. At the first level, the arrival/departure time and daily traveled miles of EV fleets are modeled via stochastic scenarios, while renewable energy production at the second level is dealt with by information gap decision theory (IGDT). Ultimately, different case studies verify that AEVHs can deploy their thermal flexibility together with the smart charging strategy of the EVs to influence the local electricity, thermal energy and even WEM prices. Using the proposed three-level optimization framework reaches the best point of equilibrium between different market players. The outcomes prove the effectiveness of the proposed model. Based on the results, the AEVH can deploy the proposed model to diminish the WEM price by 2.1%, while the local electricity price was dropped by 18.85%. Furthermore, the thermal energy price was reduced by 5.82%, which illustrates that EVs can influence the thermal energy market through the combined heat and power units.

Keywords: Electric vehicles; Thermal energy market; Strategic scheduling; Three-level optimization; Wholesale electricity market; Local electricity market (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922010340
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010340

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119749

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010340