EconPapers    
Economics at your fingertips  
 

Starch acetate and carboxymethyl starch as green and sustainable polymer electrolytes for high performance lithium ion batteries

Saeed Hadad, Mahtab Hamrahjoo, Elham Dehghani, Mehdi Salami-Kalajahi, Svetlana N. Eliseeva, Amir Rezvani Moghaddam and Hossein Roghani-Mamaqani

Applied Energy, 2022, vol. 324, issue C, No S0306261922010492

Abstract: Starch-based electrolytes are used here to achieve safe, efficient, inexpensive, and eco-friendly lithium ion batteries (LIBs). Carboxymethyl starch (CMS) and starch acetate (SA) are synthesized as starch amorphous derivatives from corn starch, and then crosslinked by poly(vinyl alcohol) (PVA) to form a polymer network. In the following, the electrochemical properties of the obtained electrolytes in both solid and gel states are investigated. At room temperature, the ionic conductivity for solid CMS and gel SA electrolytes are 9.2*10-3 S cm−1 and 1.13*10-2 S cm−1, respectively. Other remarkable results of these electrolytes are the wide electrochemical stability window, stable cyclic performance, charge capacity higher than 210 mAh/g, CE = 100 % before 10 cycles charge–discharge for both CMS and SA, and good electrode/electrolyte compatibility. The unparalleled electrochemical performance of CMS and SA, along with their unique properties, make them a unique alternative to liquid electrolytes in LIB.

Keywords: Solid polymer electrolyte; Gel polymer electrolyte; High ionic conductivity; Starch; Lithium ion battery (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922010492
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010492

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119767

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010492