EconPapers    
Economics at your fingertips  
 

Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree

Wei-Hsin Chen, Hsiu-Ju Lo, Ria Aniza, Bo-Jhih Lin, Young-Kwon Park, Eilhann E. Kwon, Herng-Kuang Sheen and Laumar Alan Dave R. Grafilo

Applied Energy, 2022, vol. 324, issue C, No S0306261922010558

Abstract: Artificial intelligence (AI) has become the future trend for prediction after the data is provided to machine learning. This study uses data analysis to optimize the experiment, find the best-operating conditions, and obtain the maximum glucose concentration for bioethanol production where wet torrefaction (WT) is used to perform biomass pretreatment. Forty-nine (49) sets of data are split into training and test data in the ratio of 7:4. Glucose concentrations from five different feedstocks are trained and predicted using a neural network (NN) and multivariate adaptive regression splines (MARS), followed by a decision tree (DT) to predict the classification of the materials. The predicted NN results are better than MARS, so the NN training is used for the glucose prediction along with the Box-Behnken design (BBD) experiment. The BBD experiment is performed with the parameters of temperature (170, 175, and 180 °C), reaction time (10, 20, and 30 min), and sulfuric acid concentration (0, 0.01, and 0.02 M) for the WT of sorghum distillery residue. By adding the BBD experimental data in NN training, the fit quality of the model is improved to 99.78 %. The NN model predicts that the highest glucose concentration occurring at the optimal conditions (i.e., 173 °C, 10.5 min, and 0.02 M sulfuric acid) is 15.216 g/L with a relative error of 5.55 % between the prediction and experiment. These resuts indicate that NN is an appropriate approach to predicting glucose production from biomass WT for bioethanol production. Additionally, the analysis of variance (ANOVA) evaluation shows that the order of the vital parameter for glucose concentration is sulfuric acid, followed by reaction time and temperature.

Keywords: Wet torrefaction and bioethanol; Glucose concentration; Multivariate adaptive regression splines (MARS); Neural network (NN) and Decision tree (DT); AI and optimization; Analysis of variance (ANOVA) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922010558
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010558

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119775

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010558