EconPapers    
Economics at your fingertips  
 

The attention-assisted ordinary differential equation networks for short-term probabilistic wind power predictions

Xin Liu, Luoxiao Yang and Zijun Zhang

Applied Energy, 2022, vol. 324, issue C, No S0306261922010716

Abstract: To improve the practicality, data-driven techniques of predicting the wind power generation and its uncertainty still need to address three technical challenges, uplifting the prediction accuracy via inventing an emerging data analytics mechanism, flexibly scaling up the prediction resolution from the data sampling resolution, and preventing invalid probabilistic prediction results. This study is thus motivated to investigate an advanced prediction method enabling highly accurate and valid probabilistic wind power predictions as well as the capability of a resolution scale-up. The long short term memory (LSTM) network combined with an attention-assisted ordinary differential equation network (AODEN), LSTM-AODEN, is developed for the first time in the literature to produce a novel deep network architecture for probabilistic wind power predictions via leveraging advantages of deep learning and ordinary differential equations. In the LSTM-AODEN, a two-stage training scheme, which sequentially develops one median prediction model and one multi-interval length prediction model, is proposed to fully eliminate quantile crossings and guarantee the validity of prediction results. Six evaluation metrics in computational experiments verify that the proposed LSTM-AODEN method leads to overall highly accurate and fully valid results of the point prediction, interval prediction, and quantile prediction compared to several classes of state-of-the-art probabilistic prediction methods. Meanwhile, the proposed method is proved to offer a unique capability of generating higher-resolution probabilistic wind power prediction results, which is gained from the AODEN, indicated by the lowest prediction errors.

Keywords: Wind energy system; SCADA data; Short-term prediction; Neural networks; Attention mechanism (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922010716
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010716

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119794

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010716