EconPapers    
Economics at your fingertips  
 

Operational optimization for off-grid renewable building energy system using deep reinforcement learning

Yuan Gao, Yuki Matsunami, Shohei Miyata and Yasunori Akashi

Applied Energy, 2022, vol. 325, issue C, No S0306261922010625

Abstract: With the application of renewable energy in single office buildings, an increasing number of power grids require building systems coupled with renewable energy to realize off-grid operation. However, the uncertainty of renewable energy sources and the safety of the corresponding energy storage equipment have become major challenges for these systems. Reinforcement learning has made considerable progress in the field of building control as an advanced control algorithm; however, research on its application to the off-grid operation of renewable energy systems, particularly the specific reward function design is limited.

Keywords: Reinforcement learning; Off-grid operation; Operational optimization; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922010625
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010625

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119783

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010625