EconPapers    
Economics at your fingertips  
 

The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach

Danial Esmaeili Aliabadi and Katrina Chan

Applied Energy, 2022, vol. 325, issue C, No S030626192201087X

Abstract: According to Sustainable Development Goals (SDGs), societies should have access to affordable, reliable, and sustainable energy. Liberalized electricity markets have been established to provide affordable electricity for end-users through advertising competition. Although these new markets are designed to serve competition, there are recorded incidents where participants abused their market power and disrupted the competition through collusion. Unfortunately, modern autonomous pricing algorithms may further assist myopic players to discover collusive strategies with a minimum amount of sensitive information. Therefore, in this study, we investigate the impact of emerging learning algorithms on the bidding strategies of Power Generating Companies (GenCos) and compare their performance against game-theoretic expectations. A novel deep Q-network (DQN) model is developed, by which GenCos determine the bidding strategies to maximize average long-term payoffs in a day-ahead market. The presented DQN model assumes that GenCos have no information regarding the rivals’ true generation costs and profits. To the best of the authors’ knowledge, this is the first study that thoroughly investigates players’ behavior utilizing a modern DQN model and compares its results with equilibria of the non-cooperative single-stage and infinitely-repeated games in the context of electricity markets. The outcomes articulate that GenCos equipped with advanced learning models may be able to collude unintentionally while trying to ameliorate long-term profits. Moreover, GenCos that employ the presented DQN model could discover and sustain more profitable (e.g., collusive) strategies vis-à-vis a conventional Q-learning method. Collusive strategies can lead to exorbitant electric bills for end-users, which is one of the influential factors in energy poverty. Thus, policymakers and market designers should be vigilant regarding the combined effect of information disclosure and autonomous pricing, as new models exploit information more effectively.

Keywords: Collusion; Deep Q-network; Day-ahead electricity market; Nash equilibrium (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192201087X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:325:y:2022:i:c:s030626192201087x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119813

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:325:y:2022:i:c:s030626192201087x