A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting
Xinbo He,
Yong Wang,
Yuyang Zhang,
Xin Ma,
Wenqing Wu and
Lei Zhang
Applied Energy, 2022, vol. 325, issue C, No S0306261922011217
Abstract:
Renewable energy has made a significant contribution to global power generation. Therefore, accurate mid-to-long term renewable energy generation forecasting is becoming more and more important for integrating renewable energy systems with smart grid and energy strategic planning. For this purpose, a novel structure adaptive new information priority discrete grey prediction model is established, and the disturbance analysis shows that it is suitable for small sample modeling. Firstly, the fractional dynamic weighted coefficient is introduced to define the accumulative generating operator satisfying the new information priority principle, which can realize the effective utilization of system information with insufficient information and accurately extract the development mode of system sequence from sparse samples. In terms of model structure, the nonlinear term and periodic fluctuation term are introduced to simulate the nonlinear and periodic fluctuation trend of renewable energy generation data, which improves the adaptability of the grey prediction model to the nonlinear and fluctuating time series. By designing the comparative experiment of optimization algorithm, Grey Wolf Optimizer (GWO) is selected to optimize the structural parameters of the model, giving the proposed model higher flexibility and stronger adaptability. In order to illustrate the performance of the model, the new model is compared with statistical econometrics technology, artificial neural network (ANN) and various existing grey models in three cases: World biofuel power generation, China's renewable energy power generation and small-scale solar photovoltaic power generation in the United States. The experimental results show that the proposed model is superior to other competitive models in terms of fitting accuracy and prediction accuracy. In addition, Monte-Carlo Simulation and probability density analysis further show that the proposed model can provide the best prediction effect and has high robustness.
Keywords: Structure adaptive; Discrete grey model; Monte-Carlo Simulation; Probability density; Renewable energy generation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922011217
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011217
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119854
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().