EconPapers    
Economics at your fingertips  
 

Stochastic co-optimization of speed planning and powertrain control with dynamic probabilistic constraints for safe and ecological driving

Chao Sun, Chuntao Zhang, Fengchun Sun and Xingyu Zhou

Applied Energy, 2022, vol. 325, issue C, No S0306261922011400

Abstract: Ameliorating energy efficiency and enhancing driving safety are both extremely concerning issues for connected and automated electric vehicles (CAEVs) driving in a random traffic environment. To enhance driving safety and fully coordinate the potential conflict between driving safety and energy efficiency, an adaptive co-optimization method of speed planning and energy management strategy (EMS) with dynamic probabilistic constraints is proposed under the framework of stochastic model predictive control. The dynamic probabilistic constraints are enabled by the proposed composite sequence generation model, which predicts the future speed distribution of the preceding vehicle according to the probability relationship among future speed sequence, historical speed sequence, and macroscopic traffic state of downstream road segments, effectively modeling the macro and micro disturbance from random traffic environment and improving the prediction accuracy by about 10% (along with an over 57% decrease in distribution divergence) compared with pure sequence generation model. Comparison with existing co-optimization methods under the same car-following tasks validates the promising performance of the proposed adaptive co-optimization method, which produces dynamic feasible regions for kinematic states according to downstream traffic state and the driving state of the preceding vehicle, raising the driving safety by 14.81% and retaining the relatively high energy efficiency.

Keywords: Eco-driving; Model predictive control; Random environment; Energy management strategy; Energy economy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922011400
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011400

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119874

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011400