High-resolution accounting of urban emissions in China
Bofeng Cai,
Helin Liu,
Xiaoling Zhang,
Haozhi Pan,
Mengxue Zhao,
Tianming Zheng,
Jingxin Nie,
Mengbing Du and
Shobhakar Dhakal
Applied Energy, 2022, vol. 325, issue C, No S030626192201159X
Abstract:
The cities of China, the world’s largest CO2 emitting country, play a crucial role in mitigating global climate change by their pursuit of carbon neutrality. However, assessing their decarbonization levels with internationally recognized metrics such as the OECD cities’ criteria is a major challenge, as the fuzzy definitions of China’s cities – including by city administrative boundary (UB1), city district boundary (UB2), and urban built-up area (UB3) – create misconceptions and ambiguities over the integrity and accuracy of their reported emissions. In this study, we develop a new China high-resolution emission database (CHRED) as a means of quantifying urban emissions based on dynamic city limits defined by population density boundary (UB4). Employing a 1 km grid dataset built from point-emission sources, it is showed that: (1) the reported emissions from the adoption of different urban boundaries can have differences as large as 17.77 %; (2) the spatial structure of China’s urban CO2 emissions has a clustered pattern reflecting the country’s spatial urban agglomeration structure; (3) the CO2 emissions per capita of China mega UB4 cities are similar to OECD C40 cities; and (4) that nonindustrial emissions are influenced by geographical location and population density.
Keywords: Urban boundary; CO2 emissions; High-resolution accounting; International comparison; Low carbon policy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192201159X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:325:y:2022:i:c:s030626192201159x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119896
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().